energia eólica

por Julia Layton - traduzido por HowStuffWorks Brasil

Introdução


Pode ser difícil considerá-lo assim, mas o ar é um fluido como qualquer outro, exceto que suas partículas estão na forma gasosa em vez de líquida. Quando o ar se move rapidamente, na forma de vento, essas partículas também movem-se rapidamente. Esse movimento significa energia cinética, que pode ser capturada como a energia da água em movimento é capturada por uma turbina em uma usina hidrelétrica. No caso de uma turbina eólica, as pás da turbina são projetadas para capturar a energia cinética contida no vento. O resto é praticamente idêntico ao que ocorre em uma hidrelétrica: quando as pás da turbina capturam a energia do vento e começam a se mover, elas giram um eixo que une o cubo do rotor a um gerador. O gerador transforma essa energia rotacional em eletricidade. Fundamentalmente, gerar eletricidade a partir do vento é só uma questão de transferir energia de um meio para outro.

 

Toda a energia eólica começa com o sol. Quando o sol aquece uma determinada área de terra, o ar ao redor dessa massa de terra absorve parte desse calor. A uma certa temperatura, esse ar mais quente começa a se elevar muito rapidamente, pois um determinado volume de ar quente é mais leve do que um volume igual de ar mais frio. As partículas de ar que se movem mais rápido (mais quentes) exercem uma pressão maior do que as partículas que se movem mais devagar, de modo que são necessárias menos delas para manter a pressão normal do ar em uma determinada elevação (veja Como funcionam os balões de ar quente para aprender mais sobre a temperatura e pressão do ar). Quando este ar quente mais leve se eleva subitamente, o ar mais frio flui rapidamente para preencher o espaço vazio deixado. Este ar que velozmente preenche o espaço vazio é o vento.

 

Se você colocar um objeto - como uma pá de rotor - no caminho desse vento, o vento irá empurrá-la, transferindo parte de sua própria energia de movimento para a pá. É assim que uma turbina eólica captura a energia do vento. A mesma coisa acontece com um barco à vela. Quando o ar se move empurrando a barreira da vela, faz o barco se mover. O vento transferiu sua própria energia de movimento para o barco à vela.

A turbina de energia eólica mais simples possível consiste em três partes fundamentais:
 

  • pás do rotor: as pás são, basicamente, as velas do sistema. Em sua forma mais simples, atuam como barreiras para o vento (projetos de pás mais modernas vão além do método de barreira). Quando o vento força as pás a se mover, transfere parte de sua energia para o rotor;
  • eixo: o eixo da turbina eólica é conectado ao cubo do rotor. Quando o rotor gira, o eixo gira junto. Desse modo, o rotor transfere sua energia mecânica rotacional para o eixo, que está conectado a um gerador elétrico na outra extremidade;
  • gerador: na essência, um gerador é um dispositivo bastante simples, que usa as propriedades da indução eletromagnética para produzir tensão elétrica - uma diferença de potencial elétrico. A tensão é, essencialmente, "pressão" elétrica: ela é a força que move a eletricidade ou corrente elétrica de um ponto para outro. Assim, a geração de tensão é, de fato, geração de corrente. Um gerador simples consiste em ímãs e um condutor. O condutor é um fio enrolado na forma de bobina. Dentro do gerador, o eixo se conecta a um conjunto de imãs permanentes que circunda a bobina. Na indução eletromagnética, se você tem um condutor circundado por imãs e uma dessas partes estiver girando em relação à outra, estará induzindo tensão no condutor. Quando o rotor gira o eixo, este gira o conjunto de imãs que, por sua vez, gera tensão na bobina. Essa tensão induz a circulação de corrente elétrica (geralmente corrente alternada) através das linhas de energia elétrica para distribuição. Veja Como funcionam os eletroimãs para aprender mais sobre a indução eletromagnética e Como funcionam as usinas hidrelétricas para aprender mais sobre geradores acionados a turbina.

 

Observe que até agora vimos um sistema simplificado, porém veremos a moderna tecnologia que você encontra em fazendas eólicas e quintais de propriedades rurais de hoje. Ela é um pouco mais complexa, mas os princípios fundamentais são os mesmos.

 

A moderna tecnologia de geração eólica
Quando se trata de turbinas eólicas modernas, há dois projetos principais: as de eixo horizontal e as de eixo vertical. Turbinas eólicas de eixo vertical (TEEVs) são bastante raras. A única em produção comercial atualmente é a turbina Darrieus, que se parece um pouco com uma batedeira de ovos.


Turbinas eólicas de eixo vertical

Fotos cedidas por NREL (esquerda) e Solwind Ltd
Turbinas eólicas de eixo vertical; a da esquerda é uma turbina Darrieus

Em uma TEEV, o eixo é montado na vertical, perpendicular ao solo. Como as TEEVs estão permanentemente alinhadas com o vento (ao contrário das de eixo horizontal), nenhum ajuste é necessário quando a direção do vento muda. Entretanto, uma TEEV não pode começar a se mover por si mesma: ela precisa de um impulso de seu sistema elétrico para dar partida. Em vez de uma torre, ela geralmente usa cabos de amarração para sustentação, pois assim a elevação do rotor é menor. Como menor elevação significa menor velocidade do vento devido à interferência do solo, as TEEVs geralmente são menos eficientes que as TEEHs. Como vantagem, todos os equipamentos se encontram ao nível do solo para facilidade de instalação e serviços. Mas isso significa uma área de base maior para a turbina, o que é uma grande desvantagem em áreas de cultivo.

ilustração de uma TEEV de projeto Darrieus

TEEV de projeto Darrieus

As TEEVs podem ser usadas para turbinas de pequena escala e para o bombeamento de água em áreas rurais, mas todas as turbinas de escala de geração pública produzidas comercialmente são turbinas eólicas de eixo horizontal (TEEHs).

uma fazenda eólica na Califórnia

Foto cedida por GNU / Kit Conn
Fazenda eólica na Califórnia

Como o nome indica, o eixo da TEEH é montado horizontalmente, paralelo ao solo. As TEEHs precisam se alinhar constantemente com o vento, usando um mecanismo de ajuste. O sistema de ajuste padrão consiste de motores elétricos e caixas de engrenagens que movem todo o rotor para a esquerda ou direita em pequenos incrementos. O controlador eletrônico da turbina lê a posição de um dispositivo cata-vento (mecânico ou eletrônico) e ajusta a posição do rotor para capturar o máximo de energia eólica disponível. As TEEHs usam uma torre para elevar os componentes da turbina a uma altura ideal para a velocidade do vento (e para que as pás possam ficar longe do solo) e ocupam muito pouco espaço no solo, já que todos os componentes estão a até 80 metros de altura.

 

Componentes de uma grande TEEH:

  • pás do rotor: capturam a energia do vento e a convertem em energia rotacional no eixo;
  • eixo: transfere a energia rotacional para o gerador;
  • nacele: é a carcaça que abriga: •caixa de engrenagens: aumenta a velocidade do eixo entre o cubo do rotor e o gerador;
  • gerador: usa a energia rotacional do eixo para gerar eletricidade usando eletromagnetismo;
  • unidade de controle eletrônico (não mostrada): monitora o sistema, desliga a turbina em caso de mau funcionamento e controla o mecanismo de ajuste para alinhamento da turbina com o vento;
  • controlador (não mostrado): move o rotor para alinhá-lo com a direção do vento;
  • freios: detêm a rotação do eixo em caso de sobrecarga de energia ou falha no sistema.
  • torre: sustenta o rotor e a nacele, além de erguer todo o conjunto a uma altura onde as pás possam girar com segurança e distantes do solo;
  • equipamentos elétricos: transmitem a eletricidade do gerador através da torre e controlam os diversos elementos de segurança da turbina.
     

Do início ao fim, o processo de geração de eletricidade a partir do vento e distribuição de eletricidade para os consumidores se parece com isto:


Ao contrário do antigo projeto de moinho de vento holandês, que dependia muito da força do vento para colocar as pás em movimento, as turbinas modernas usam princípios aerodinâmicos mais sofisticados para capturar a energia do vento com mais eficácia. As duas forças aerodinâmicas principais que atuam sobre os rotores da turbina eólica são o empuxo, que atua perpendicularmente ao fluxo do vento, e o arrasto, que atua paralelamente ao fluxo do vento.

uma ilustração da aerodinâmica da turbina

As pás da turbina têm uma forma parecida com asas de avião: elas usam um desenho de aerofólio. Em um aerofólio, uma das superfícies da pá é um pouco arredondada, enquanto a outra é relativamente plana. O empuxo é um fenômeno bastante complexo e pode de fato exigir pós-graduação em matemática ou física para ser completamente entendido. Mas, simplificando, quando o vento se desloca sobre uma face arredondada e a favor da pá, ele precisa se mover mais rápido para atingir a outra extremidade da pá a tempo de encontrar o vento que se desloca ao longo da face plana e contra a pá (voltada na direção de onde sopra o vento). Como o ar que se move mais rápido tende a se elevar na atmosfera, a superfície curvada e contra o vento gera um bolsão de baixa pressão acima dela. A área de baixa pressão puxa a pá na direção a favor do vento, um efeito conhecido como "empuxo". Na dirreção contra o vento da pá, o vento se move mais devagar e cria uma área de pressão mais elevada que empurra a pá, tentando diminuir sua velocidade. Como no desenho de uma asa de avião, uma alta relação de empuxo/arrasto é essencial no projeto de uma pá de turbina eficiente. As pás da turbina são torcidas, de modo que elas possam sempre apresentar um ângulo que tire vantagem da relação ideal da força de empuxo/arrasto. Veja Como funciona o avião para aprender mais sobre empuxo, arrasto e a aerodinâmica de um aerofólio.

A aerodinâmica não é a única consideração de projeto em jogo na criação de uma turbina eólica eficaz. O tamanho importa: quanto maiores as pás da turbina (e, portanto, quanto maior o diâmetro do rotor), mais energia uma turbina pode capturar do vento e maior a capacidade de geração de energia elétrica. Falando de modo geral, dobrar o diâmetro do rotor quadruplica a produção de energia. Em alguns casos, entretanto, em uma área de menor velocidade do vento, um rotor de menor diâmetro pode acabar produzindo mais energia do que um rotor maior. Isso ocorre porque uma estrutura menor consome menos energia do vento para girar o gerador menor, de modo que a turbina pode operar a plena capacidade quase o tempo todo. A altura da torre também é um fator importante na capacidade de produção. Quanto mais alta a turbina, mais energia ela pode capturar, visto que a velocidade do vento aumenta com a altura (o atrito com o solo e os objetos ao nível do solo interrompem o fluxo do vento). Os cientistas estimam um aumento de 12% na velocidade do vento cada vez que se dobra a elevação.

Para calcular a real quantidade de potência que uma turbina pode gerar a partir do vento, você precisa conhecer a velocidade do vento no local da turbina e a capacidade nominal da turbina. A maioria das turbinas grandes produz sua potência máxima com velocidades do vento ao redor de 15 m/s (54 km/h). Considerando velocidades do vento estáveis, é o diâmetro do rotor que determina a quantidade de energia que uma turbina pode gerar. Tenha em mente que, à medida que o diâmetro de um rotor aumenta, a altura da torre também aumenta, o que significa maior acesso a ventos mais rápidos

A 54 km/h, a maioria das grandes turbinas gera sua capacidade nominal de potência, e a 72 km/h (20 m/s), a maioria das grandes turbinas se desliga. Existem diversos sistemas de segurança que podem desligar a turbina se a velocidade do vento ameaçar a estrutura, incluindo um simples sensor de vibração usado em algumas turbinas, que consiste basicamente de uma esfera metálica presa a uma corrente e equilibrada sobre um minúsculo pedestal. Se a turbina começar a vibrar acima de um certo limite, a esfera cai do pedestal e puxa a corrente, ativando o mecanismo de desligamento.

Provavelmente, o sistema de segurança mais comumente ativado em uma turbina é o sistema de "frenagem", que é ativado por velocidades do vento acima do limite. Esse arranjo usa um sistema de controle de potência que, essencialmente, aciona os freios quando a velocidade do vento se eleva em demasia e depois "libera os freios" quando o vento diminui abaixo de 72 km/h. Os modernos projetos de grandes turbinas usam diversos tipos diferentes de sistemas de frenagem.
 

  • Controle de passo: o controlador eletrônico da turbina monitora a geração de potência. Com velocidades do vento acima de 72 km/h, a geração de potência será excessiva, a ponto de o controlador ordenar que as pás alterem seu passo de modo que fiquem desalinhadas com o vento. Isto diminui a rotação das pás. Os sistemas de controle de passo requerem que o ângulo de montagem das pás (no rotor) seja ajustável.
  • Controle passivo de perda de eficiência aerodinâmica: as pás são montadas no rotor em um ângulo fixo, mas são projetadas de modo que a torção das próprias pás aplique a frenagem quando o vento for excessivo. As pás estão dispostas em ângulo, assim os ventos acima de uma certa velocidade causarão turbulência no lado contrário da pá, induzindo à perda da eficiência aerodinâmica. Em termos simples, a perda da eficiência aerodinâmica ocorre quando o ângulo da pá voltado para a chegada do vento se torna tão acentuado que começa a eliminar a força de empuxo, diminuindo a velocidade das pás.
  • Controle ativo de perda de eficiência aerodinâmica: as pás neste tipo de sistema de controle de potência possuem passo variável, como as pás do sistema de controle de passo. Um sistema ativo de perda de eficiência aerodinâmica lê a geração de potência do mesmo modo que um sistema de passo controlado, mas em vez de mudar o passo das pás para desalinhá-las com o vento, ele as altera para gerar perda de eficiência aerodinâmica.
     

Globalmente, pelo menos 50 mil turbinas eólicas geram um total de 50 bilhões de quilowatt-hora (kWh) anualmente. Na próxima seção, vamos examinar a disponibilidade de recursos eólicos e quanta eletricidade as turbinas eólicas podem produzir realmente.

No Brasil

O potencial eólico brasileiro é de 143,5 GW (GigaWatts), segundo um estudo da Centro de Pesquisa em Energia Elétrica (Cepel) do Ministério de Minas e Energia feito em 2005. O estudo levou em conta geradores de energia eólica de até 50 metros. Com o avanço tecnológico no setor, que permite geradores de até 80 metros atualmente no Brasil, o potencial cresceria mais ou menos 50%.

 

“Quanto mais alto, mais potencial eólico, já que vão diminuindo os problemas com relevo e rugosidade do solo”, afirma o pesquisa da Cepel Antônio Leite.Esse potencial de 143,5 GW representaria a geração de energia de 146 milhões de residência. Essa conta, no entanto, é só ilustrativa. A energia eólica não é energia firme, ou seja, com fornecimento constante. Assim, sua energia é armazenada em baterias ou trabalha em conjunto com as hidrelétricas, ajudando, por exemplo, no abastecimento dos reservatórios dessas usinas. O potencial instalado no Brasil é atualmente de 247,5 MW (MegaWatts), ou seja, 0,25% dos 99,7 GW gerados no país, segundo dados de dezembro de 2007. A tabela abaixo mostra dados de seis meses antes.

 

O crescimento da capacidade instalada no país se deve em grande parte pelos incentivos que o governo federal tem dado para o assunto. O Programa de Incentivo a Fontes Alternativas de Energia Elétrica (Proinfa), administrado pelo Banco Nacional de Desenvolvimento Econômico e Social (BNDES), trata-se de uma linha de crédito prevê financiamento de até 70% do investimento, excluindo apenas bens e serviços importados e a aquisição de terrenos. As condições do financiamento são TJLP mais 2% e até 1,5% de spread de risco ao ano. A carência de seis meses, após a entrada em operação comercial, amortização por dez anos e não-pagamento de juros durante a construção do empreendimento.

 Fontes

•"Aerodinâmica das turbinas eólicas: arrasto". Associação Dinamarquesa da Indústria Eólica. https://www.windpower.org/en/tour/wtrb/drag.htm
•Airtricity (Aerotricidade) https://www.airtricity.com/america/
•"Relatório anti-fazenda eólica rejeitado." BBC News. 26 de fevereiro de 2005. https://news.bbc.co.uk/2/hi/uk_news/4300723.stm
•Arvizu, Dan, Ph.D. "Eletricidade Renovável: Equilibrada para fazer uma diferença." Power Engineering. Maio de 2006.  https://pepei.pennnet.com/Articles/Article_Display.cfm?Section=ARTCLandARTICLE_ID=255997andVERSION_NUM=2andp=6
•"Comprando energia eólica no mercado de varejo". Associação Americana de Energia Eólica. https://www.awea.org/pubs/factsheets/BuyingWindRetail.pdf
•Associação Dinamarquesa da Indústria Eólica - https://www.windpower.org/en/tour/wtrb/rotor.htm
•"Geração Distribuída de Energia". Solarbuzz.com. - https://www.solarbuzz.com/DistributedGeneration.htm
•"A Economia da Energia Eólica". Associação Americana de Energia Eólica. - https://www.awea.org/pubs/factsheets/EconomicsOfWind-Feb2005.pdf
•"Comparação de Taxas de Eletricidade por Estado." Web Site Oficial do Governo do Estado de Nebraska. - https://www.neo.state.ne.us/statshtml/115.htm
•Estill, Glen. "A solução de US$ 0,03." Wind Blog (Blog do Vento).  https://www.biofuels.coop/windblog/?p=10
•Gangemi, Jeffrey. "Vendendo energia de volta à rede." BusinessWeek Online. 6 de julho de 2006.
https://www.businessweek.com/smallbiz/content/jul2006/sb20060706_167332.htm
•"As perguntas mais freqüentes sobre energia eólica." Associação Americana de Energia Eólica.
https://www.awea.org/pubs/documents/FAQ2002%20-%20web.PDF
•"Padrões do portfolio de nível estadual da energia renovável (RPS)." Associação Americana de Energia Eólica.
https://www.awea.org/pubs/factsheets/0509-RPS_Progresses_in_States.pdf
•"Energia eólica: um recurso desencadeado." Associação Americana de Energia Eólica.
https://www.awea.org/pubs/factsheets/Wind_Energy_An_Untapped_Resource.pdf
•"Energia eólica e vida selvagem: Perguntas Mais Freqüentes." Associação Americana de Energia Eólica.
https://www.awea.org/pubs/factsheets/050629_Wind_Wildlife_FAQ.pdf
•"Energia eólica: Como ela funciona?" Associação Americana de Energia Eólica.
https://www.awea.org/pubs/factsheets/Wind_Energy_How_does_it_Work.pdf
•"Tecnologias de energia eólica." Departamento de Energia dos EUA.
https://www.eere.energy.gov/RE/wind_technologies.html
•"Energia eólica: O combustível do futuro está pronto hoje." Associação Americana de Energia Eólica.
https://www.awea.org/pubs/factsheets/wetoday.pdf
•"Energia eólica hoje." Associação Americana de Energia Eólica.  https://www.awea.org/pubs/factsheets/WindPowerTodayFinal.pdf
•"Extensão do PTC ao vento instigará desenvolvimento, principalmente para projetos bem avançados." CWEB.106/29 de outubro de 2004
https://www.newsdata.com/enernet/conweb/conweb106.html#cw106-5